Предел приращения. §1. Определение производной. Геометрический и физический смысл производной

Производная функции одной переменной.

Введение.

Настоящие методические разработки предназначены для студентов факультета промышленное и гражданское строительство. Они составлены применительно к программе курса математики по разделу «Дифференциальное исчисление функций одного переменного».

Разработки представляют собой единое методическое руководство, включающее в себя: краткие теоретические сведения; «типовые» задачи и упражнения с подробными решениями и пояснениями к этим решениям; варианты контрольной работы.

В конце каждого параграфа дополнительные упражнения. Такая структура разработок делает их пригодными для самостоятельного овладения разделом при самой минимальной помощи со стороны преподавателя.

§1. Определение производной.

Механический и геометрический смысл

производной.

Понятие производной является одним из самых важных понятий математического анализа.Оно возникло еще в 17 веке. Формирование понятия производной исторически связано с двумя задачами: задачей о скорости переменного движения и задачей о касательной к кривой.

Эти задачи, несмотря на их различное содержание, приводят к одной и той же математической операции, которую нужно провести над функцией.Эта операция получила в математике специальное название. Она называется операцией дифференцирования функции. Результат операции дифференцирования называется производной.

Итак, производной функцииy=f(x) в точкеx0 называется предел (если он существует) отношения приращения функции к приращению аргумента
при
.

Производную принято обозначать так:
.

Таким образом, по определению

Для обозначения производной употребляются также символы
.

Механический смысл производной.

Если s=s(t) – закон прямолинейного движения материальной точки, то
есть скорость этой точки в момент времениt.

Геометрический смысл производной.

Если функция y=f(x) имеет производную в точке, то угловой коэффициент касательной к графику функции в точке
равен
.

Пример.

Найдите производную функции
в точке=2:

1) Дадим точке =2 приращение
. Заметим, что.

2) Найдем приращение функции в точке =2:

3) Составим отношение приращения функции к приращению аргумента:

Найдем предел отношения при
:

.

Таким образом,
.

§ 2. Производные от некоторых

простейших функций.

Студенту необходимо научиться вычислять производные конкретных функций: y=x,y=и вообщеy=.

Найдем производную функции у=х.

т.е. (x)′=1.

Найдем производную функции

Производная

Пусть
тогда

Легко заметить закономерность в выражениях производных от степенной функции
приn=1,2,3.

Следовательно,

. (1)

Эта формула справедлива для любых действительных n.

В частности, используя формулу (1), имеем:

;

.

Пример.

Найдите производную функции

.

.

Данная функция является частным случаем функции вида

при
.

Используя формулу (1), имеем

.

Производные функций y=sin x и y=cos x.

Пусть y=sinx.

Разделим на ∆x, получим

Переходя к пределу при ∆x→0, имеем

Пусть y=cosx .

Переходя к пределу при ∆x→0, получим

;
. (2)

§3. Основные правила дифференцирования.

Рассмотрим правила дифференцирования.

Теорема 1 . Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx,то в этой точке дифференцируема и их сумма, причем производная суммы равна сумме производных слагаемых: (u+v)"=u"+v".(3)

Доказательство: рассмотрим функцию y=f(x)=u(x)+v(x).

Приращению ∆x аргумента x соответствуют приращения ∆u=u(x+∆x)-u(x), ∆v=v(x+∆x)-v(x) функций u и v. Тогда функция y получит приращение

∆y=f(x+∆x)-f(x)=

=--=∆u+∆v.

Следовательно,

Итак, (u+v)"=u"+v".

Теорема 2. Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx, то в той же точке дифференцируемо и их произведение.При этом производная произведения находится по следующей формуле: (uv)"=u"v+uv". (4)

Доказательство: Пусть y=uv, где u и v – некоторые дифференцируемые функции от x. Дадим x приращение ∆x;тогда u получит приращение ∆u, v получит приращение ∆v и y получит приращение ∆y.

Имеем y+∆y=(u+∆u)(v+∆v), или

y+∆y=uv+u∆v+v∆u+∆u∆v.

Следовательно, ∆y=u∆v+v∆u+∆u∆v.

Отсюда

Переходя к пределу при ∆x→0 и учитывая, чтоuиvне зависят от ∆x, будем иметь

Теорема 3 . Производная частного двух функций равна дроби, знаменатель которой равен квадрату делителя, а числитель- разности между произведением производной делимого на делитель и произведением делимого на производную делителя, т.е.

Если
то
(5)

Теорема 4. Производная постоянной равна нулю, т.е. если y=C, где С=const, то y"=0.

Теорема 5. Постоянный множитель можно выносить за знак производной, т.е. если y=Cu(x), где С=const, то y"=Cu"(x).

Пример 1.

Найдите производную функции

.

Данная функция имеет вид
, гдеu=x,v=cosx. Применяя правило дифференцирования (4), находим

.

Пример 2.

Найдите производную функции

.

Применим формулу (5).

Здесь
;
.

Задачи.

Найдите производные следующих функций:

;

11)

2)
; 12)
;

3)
13)

4)
14)

5)
15)

6)
16)

7 )
17)

8)
18)

9)
19)

10)
20)

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f " (x) , называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу x приращение  x и определяем соответствующее приращение функции  y = f(x+  x) -f(x) ; 2) составляем отношение

3) считая x постоянным, а  x 0, находим
, который обозначаем черезf " (x) , как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x , при котором мы переходим к пределу. Определение : Производной y " =f " (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом,
, или

Заметим, что если при некотором значении x , например при x=a , отношение
при x 0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a ) не имеет производной или не дифференцируема в точке x=a .

2. Геометрический смысл производной.

Рассмотрим график функции у = f (х), дифференцируемой в окрест­ностях точки x 0

f(x)

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .

Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим
илиtg =f "(x 0), так как
-угол накло­на касательной к положительному направлению оси Ох
, по определению производной. Но tg = k - угловой коэффициент каса­тельной, значит, k = tg = f "(x 0).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.

lim Vср (t) = (t 0) - мгновенная скорость в момент времени t 0 , ∆t → 0.

а lim = ∆x/∆t = x"(t 0) (по определению производной).

Итак, (t) =x"(t).

Физический смысл производной заключается в следующем: произ­водная функции y = f (x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x"(t) - скорость,

a(f) = "(t) - ускорение, или

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) - изменение угла от времени,

ω = φ"(t) - угловая скорость,

ε = φ"(t) - угловое ускорение, или ε = φ"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x  , l - длина стержня,

р = m"(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω 2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω 2 x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ 0) или у = Acos(ωt + φ 0), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования :

  1. Вынос константы за знак производной: $$ (Cu)" = C(u)" $$
  2. Производная суммы /разности функций: $$ (u \pm v)" = (u)" \pm (v)" $$
  3. Производная произведения двух функций: $$ (u \cdot v)" = u"v + uv" $$
  4. Производная дроби : $$ \bigg (\frac{u}{v} \bigg)" = \frac{u"v - uv"}{v^2} $$
  5. Производная сложной функции : $$ (f(g(x)))" = f"(g(x)) \cdot g"(x) $$

Примеры решения

Пример 1
Найти производную функции $ y = x^3 - 2x^2 + 7x - 1 $
Решение

Производная суммы/разности функций равна сумме/разности производных:

$$ y" = (x^3 - 2x^2 + 7x - 1)" = (x^3)" - (2x^2)" + (7x)" - (1)" = $$

Используя правило производной степенной функции $ (x^p)" = px^{p-1} $ имеем:

$$ y" = 3x^{3-1} - 2 \cdot 2 x^{2-1} + 7 - 0 = 3x^2 - 4x + 7 $$

Так же было учтено, что производная от константы равна нулю.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y" = 3x^2 - 4x + 7 $$

Понятие производной

Пусть функция f (x ) определена на некотором промежутке X. Придадим значению аргумента в точке x 0 Х произволь­ное приращение Δx так, чтобы точка x 0 + Δx также принад­лежала X. Тогда соответствующее приращение функции f(x) составит Δу = f (x 0 + Δx ) - f (x 0 ).

Определение 1. Производной функции f(x) в точке x 0 назы­вается предел отношения приращения функции в этой точке к приращению аргумента при Δx 0 (если этот предел сущест­вует).

Для обозначения производной функции употребимы симво­лы у" (x 0 ) или f "(x 0 ):

Если в некоторой точке x 0 предел (4.1) бесконечен:

то говорят, что в точке x 0 функция f (x ) имеет бесконечную производную.

Если функция f (x ) имеет производную в каждой точке мно­жества X, то производная f"(x) также является функцией от аргумента х, определенной на X.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f (x ) в точке М называется предельное положение секущей MN, ког­да точка N стремится к точке М по кривой f (x ).

Пусть точка М на кривой f (x ) соответствует значению ар­гумента x 0 , а точка N - значению аргумента x 0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x 0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx . Из треугольника MNA следует, что

Если производная функции f (x ) в точке x 0 существует, то, согласно (4.1), получаем

Отсюда следует наглядный вывод о том, что производная f "(x 0 ) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной кграфику функции у = f (x ) в точке М (x 0 , f (x 0 )). При этомуголнаклона касательной определяется из формулы (4.2):

Физический смысл производной

Предположим, что функция l = f (t ) описывает закон дви­жения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) - это путь, пройденный за интервал времени Δt , а отношение Δl t - средняя скорость за время Δt . Тогда предел определяет мгновенную скорость точки в момент вре­мени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f "(x ), тем больше угол наклона касательной к кривой, тем круче график f (x ) и быстрее растет функция.



Правая и левая производные

По аналогии с понятиями односторонних пределов функ­ции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x 0 называется правый (левый) предел отноше­ния (4.1) при Δx 0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

Если функция f (x ) имеет в точке x 0 производную, то она имеет левую и правую производные в этой точке, которые сов­падают.

Приведем пример функции, у которой существуют одно­сторонние производные в точке, не равные друг другу. Это f (x ) = |x |. Действительно, в точке х = 0 имеем f’ + (0) = 1, f" - (0) = -1 (рис. 4.2) и f’ + (0) ≠ f’ - (0), т.е. функция не имеет производной при х = 0.

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точ­ке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

ТЕОРЕМА 1. Если функция дифференцируема в точке x 0 , то она и непрерывна в этой точке.

Обратное утверждение неверно: функция f (x ), непрерыв­ная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x |; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, по­скольку из первого автоматически вытекает второе.

Уравнение касательной к графику функции в данной точке

Как было указано в разделе 3.9, уравнение прямой, про­ходящей через точку М (x 0 , у 0 ) с угловым коэффициентом k имеет вид

Пусть задана функция у = f (x ). Тогда посколькуее произ­водная в некоторой точке М (x 0 , у 0 ) является угловым коэффи­циентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функ­ции f (x ) в этой точке имеет вид

Найти выражение для производной экспоненциальной функции \(y = {e^x}\), пользуясь определением производной.

Решение.

Начальные шаги являются стандартными: сначала запишем приращение функции \(\Delta y\), соответствующее приращению аргумента \(\Delta x\): \[ {\Delta y = y\left({x + \Delta x} \right) - y\left(x \right) } = {{e^{x + \Delta x}} - {e^x} } = {{e^x}{e^{\Delta x}} - {e^x} } = {{e^x}\left({{e^{\Delta x}} - 1} \right).} \] Производная вычисляется как предел отношения приращений: \[ {y"\left(x \right) = \lim\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^x}\left({{e^{\Delta x}} - 1} \right)}}{{\Delta x}}.} \] Функция \(y = {e^x}\) в числителе не зависит от Δx и ее можно вынести за знак предела. Тогда производная принимает такой вид: \[ {y"\left(x \right) = {\left({{e^x}} \right)^\prime } } = {{e^x}\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}}.} \] Обозначим полученный предел через \(L\) и вычислим его отдельно. Заметим попутно, что \({e^0} = 1\) и, поэтому, можно записать \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - {e^0}}}{{\Delta x}} = e"\left(0 \right),} \] то есть данный предел представляет собой значение производной показательной функции в нуле. Следовательно, \ Мы получили соотношение, в котором искомая производная выражается через саму функцию \(y = {e^x}\) и ее производную в точке \(x = 0\). Докажем, что \ Для этого вспомним, что число \(e\) определяется в виде бесконечного предела как \ а число \(e\) в степени \(\Delta x\) будет, соответственно, равно \[{e^{\Delta x}} = \lim\limits_{n \to \infty } {\left({1 + \frac{{\Delta x}}{n}} \right)^n}.\] Далее применим знаменитую формулу бинома Ньютона и разложим выражение под знаком предела в биномиальный ряд : \[{\left({1 + \frac{{\Delta x}}{n}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} .\] Здесь \({C_n^k}\) обозначает число сочетаний из \(n\) элементов по \(k\). В европейских и американских учебниках число сочетаний обозначается как \ Вернемся к нашему пределу \(L\), который теперь можно записать в таком виде: \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}}.} \] Нам удобно в биномиальном ряде выделить первые два слагаемых: при \(k = 0\) и \(k = 1\). В результате получаем \[ {L = \lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {C_n^0{{\left({\frac{{\Delta x}}{n}} \right)}^0} + C_n^1{{\left({\frac{{\Delta x}}{n}} \right)}^1} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {1 + n \cdot \frac{{\Delta x}}{n} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\Delta x + \lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} }}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \left[ {1 + \frac{1}{{\Delta x}}\lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] } = {1 + \lim\limits_{n \to \infty } \left[ {\lim\limits_{\Delta x \to 0} \left({\sum\limits_{k = 2}^n {C_n^k\frac{{{{\left({\Delta x} \right)}^{k - 1}}}}{{{n^k}}}} } \right)} \right].} \] Очевидно, что сумма ряда стремится к нулю при \(\Delta x \to 0\). Поэтому, \(L = 1\). Это означает, что производная экспоненциальной функции \(y = {e^x}\) равна самой функции: \

Поделиться