Когда-то Земля выглядела как инопланетное место! Наша земля миллионы лет назад (6 фото) Фигурки из Эквадора

Каким образом жизнь на Земле смогла сохраниться во время чудовищных похолоданий, несколько раз охватывавших нашу планету 600-800 миллионов лет назад? Испытала ли Земля тотальное оледенение — вплоть до установления ледового покрова на всей акватории океана? Модель, предложенная канадскими исследователями, показывает, что океан, по-видимому, никогда не замерзал полностью, а Земля представляла собой не ледяной шар, а «слякотный». Резкие колебания климата в ту далекую эпоху были результатом взаимодействия чисто физических процессов и жизнедеятельности бактерий, которые осуществляли минерализацию (окисление) растворенного в океане органического вещества. Похолодание способствовало обогащению кислородом водной толщи, а тем самым создавались благоприятные условия для бактерий, которые, перерабатывая органику, поглощали кислород и выделяли углекислый газ. Попадая из воды в атмосферу, углекислый газ создавал парниковый эффект, то есть удерживал тепло у поверхности.

В истории Земли был период особенно холодный, отличавшийся самыми мощными оледенениями. Это время так и называют «криогенный период неопротерозойской эры » (см. Cryogenian). Продолжался он довольно долго — 220 миллионов лет (850-630 миллионов лет назад) и характеризовался чередованием небольших потеплений и сильнейших похолоданий. На суше, представленной остатками древнейшего материка — Родинии , толщина льда в некоторых местах достигала 6 км, а сами льды доходили до тропических широт. Уровень океана тогда понижался на километр (для сравнения скажем, что в последнее значительное оледенение, имевшее место 20 тыс. лет назад, он снижался только на 120 м). Некоторые исследователи полагают, что во время неопротерозойских оледенений лед покрывал не только сушу, но и весь океан.

Белая поверхность нашей планеты, напоминавшей в то время снежный ком (см.: гипотеза «снежной Земли», «Snowball Earth hypothesis»), хорошо отражала падающий на нее солнечный свет и, соответственно, почти не нагревалась. Такое холодное состояние Земли было весьма устойчивым. Объяснить же, каким образом планета смогла из него выйти, было непросто. Обычно предполагали, что произошло это благодаря серии мощных извержений вулканов, сопровождавшихся выбросом в атмосферу огромного количества парниковых газов (прежде всего СО 2), выпадением на белую от снега и льда поверхность Земли пепла и кислых дождей. Увеличение содержания в атмосфере парниковых газов позволяло удерживать тепло, а пепел препятствовал отражению солнечных лучей, что и приводило к постепенному оттаиванию поверхности Земли. Жизнь в это время была представлена только обитавшими в океане бактериями и мелкими одноклеточными водорослями. Первые крупные многоклеточные (так называемая эдиакарская фауна) появились только в самом конце неопротерозоя. Хотя бактерии и протисты значительно устойчивее к неблагоприятным воздействиям, чем многоклеточные, возможность их выживания в условиях длительного глобального оледенения весьма сомнительна.

Однако трудностей традиционно предлагаемого объяснения удалось избежать в рамках новой модели, которую уже окрестили как «слякотная Земля» (Slushball Earth) — в отличие от Земли «снежной» (Snowball Earth). Авторы этой модели, канадские исследователи Ричард Пельтье (Richard Peltier), Йонганг Лиу (Yonggang Liu) и Джон Краули (John W.Crowley) — все с физического факультета Торонтского университета (Онтарио, Канада), — предположили, что океан никогда не замерзал целиком. В нем всегда оставались достаточно большие открытые участки, где продолжался фотосинтез фитопланктона и где происходил интенсивный газообмен между водной толщей и атмосферой. При построении модели использованы как данные по физическим процессам, определяющим климат, так и представления о жизнедеятельности организмов, обитавших в океане.

О масштабах образования органического вещества в отдаленные геологические эпохи обычно судят по «изотопике» — по относительному содержанию в осадочных породах стабильного изотопа углерода 13 C. Дело в том, что в процессе фотосинтеза фитопланктонные организмы (а в последствии — и растения) потребляют преимущественно более распространенный легкий изотоп углерода 12 C. Соответственно, если где-то осаждается органическое вещество, то оно оказывается обедненным 13 C. А в воде, где жили фотосинтезирующие организмы, содержание более тяжелого изотопа 13 C оказывалось, наоборот, повышенным. Если же там образовывались карбонаты, то они также отличались повышенным содержанием 13 C (собственно, по этим карбонатам мы и судим о составе воды много миллионов лет тому назад).

Органическое вещество, синтезированное фитопланктоном, после отмирания клеток выпадает в осадок или же остается в толще воды в виде растворенного органического вещества, которое оценивают обычно как растворенный органический углерод — Dissolved Organic Carbon (DOC). В океане и сейчас углерода в такой форме значительно больше, чем связанного в телах организмов или находящегося во взвешенных частицах детрита . А в эпоху неопротерозоя, когда не было еще планктонных животных, потребляющих фитопланктон, такого растворенного органического вещества было существенно (на порядки) больше. Но растворенное органическое вещество — это пища для бактерий, которые при наличии в среде кислорода осуществляют его разложение (минерализацию). В процессе дыхания бактерий выделяется углекислый газ СО 2 , который может диффундировать в атмосферу.

В своей модели Пельтье и его соавторы исходят из того, что похолодание способствует обогащению поверхностных вод океана кислородом — в холодной воде кислород как и другие газы, растворяется гораздо лучше, чем в теплой. А чем больше кислорода, тем эффективнее протекает деятельность бактерий, минерализующих растворенное органическое вещество и выделяющих углекислый газ, который, попадая из океана в атмосферу, создает парниковый эффект и не позволяет океану остывать слишком сильно. Таким образом работает обратная связь, не допускающая крайнего необратимого охлаждения.

Модель (состоящая на самом деле из нескольких блоков: для каждого бока своя подмодель) предсказывает устойчивые колебания только в том случае, когда чисто физические процессы теплообмена увязаны с процессами минерализации органического вещества, осуществляемыми бактериями. Не исключаю, что модель Пельтье скоро будет подхвачена сторонниками гипотезы Геи (когда-то выдвинутой Джеймсом Лавлоком). Ведь в соответствии этой моделью получается, что организмы в ходе своей жизнедеятельности поддерживают планету (Гею) в состоянии, пригодном для дальнейшей жизни. По сути, это одно из краеугольных положений концепции Геи.

До появления людей мир был совсем другим. Наша планета не всегда выглядела так, как сейчас. За последние 4,5 млрд. лет она пережила невероятные изменения, какие вы себе и не представляли. Если бы вы могли вернуться назад и посетить Землю миллионы лет назад, вы бы увидели чужую планету, словно сошедшую со страниц фантастических книг.

1. Гигантские грибы росли по всей планете

Примерно 400 млн. лет назад деревья были примерно до талии человека. Все растения были гораздо мельче нынешних – кроме грибов. Они вырастали на 8 м в высоту, а их ножка (или уже ствол?) была диаметром в 1 метр. У них не было таких больших шляпок, которые мы сегодня ассоциируем с грибами. Вместо этого они были просто торчащими столбами. Но они были повсюду.

2. Небо было оранжевым, а океаны зелеными

Небо не всегда было голубым. Около 3,7 млрд. лет назад, как полагают, океаны были зелеными, континенты черными, а небо выглядело как оранжевая дымка. Океаны были зелеными, потому что железо растворялось в морской воде, оставляя зеленую ржавчину. Континенты были черными из-за отсутствия растений и покрытия лавой. Небо не было голубым, поскольку вместо кислорода там в основном присутствовал метан.

3. Планета пахла тухлыми яйцами

Ученые уверены, что они знают, как пахло когда-то на нашей планете. И это был отчетливый запах тухлых яиц. Всё это потому, что 2 млрд. лет назад океаны были заполнены газообразными бактериями, питающимися солью и выделяющими сероводород, наполняя воздух зловонием.

4. Планета была фиолетовой

Когда на Земле появились первые растения, они не были зелеными. Согласно одной теории, они были бы фиолетовыми. Считается, что первые жизненные формы на Земле частично поглощали свет от Солнца. Современные растения зеленые, потому что они используют хлорофилл для поглощения солнечного света, но первые растения использовали сетчатку – и это придавало им яркий оттенок фиалки. Фиолетовый, возможно, был нашим цветом в течение длительного времени.

5. Мир выглядел как снежный ком

Мы все знаем про ледниковый период. Однако есть доказательства того, что один из ледниковых периодов 716 млн. лет назад был весьма экстремальным. Он называется периодом «снежной Земли», потому что Земля, возможно, была настолько покрыта льдом, что она буквально выглядела как гигантский белый снежный ком, плавающий в космосе.

6. Кислотный дождь падал на Земле в течение 100 тысяч лет

В конце концов, период снежной Земли закончился – причем самым ужасным образом, который только можно вообразить. Далее началось «интенсивное химическое выветривание». Другими словами, с неба постоянно лил кислотный дождь – и так 100 тысяч лет. Он растопил ледники, покрывающие планету, «отправил» в океан питательные вещества и позволил жизни зарождаться под водой. До того, как жизнь начала появляться на Земле, планета была ядовитой, негостеприимной пустыней.

7. Арктика была зеленой и густонаселенной

Примерно 50 млн. лет назад Арктика была совсем иным местом. Это было время, называемое эпохой раннего эоцена, и мир был очень теплым. На Аляске росли пальмы, а крокодилы плавали у берегов Гренландии. Северный Ледовитый океан, вероятно, был гигантским пресноводным водоемом, изобиловавшим живыми существами.

8. Пыль заблокировала солнце

Когда 65 млн. лет назад астероид врезался в Землю и уничтожил динозавров, хаос не закончился. Мир превратился в мрачное и ужасное место. Вся пыль, почва и скалистые породы поднялись в атмосферу и даже в космос, окутав планету огромным слоем пыли. С неба исчезло Солнце. Это продолжалось недолго, но даже когда исчезло огромное облако пыли, в стратосфере осталась серная кислота и попала в облака. И снова пришло время кислотных дождей.

9. Шли дожди из жидкой горячей магмы

Однако предыдущий астероид был детской игрой по сравнению с тем, который врезался в планету 4 млрд. лет назад и превратил её в адский пейзаж. Океаны на планете закипели. Жара от астероидного удара фактически закончилась испарением первых океанов на Земле. Огромные части поверхности Земли растаяли. Оксид магния поднимался в атмосферу и конденсировался в капельки жидкой горячей магмы, выпадающей в виде дождя.

10. Гигантские насекомые были повсюду

Около 300 млн. лет назад планета была полностью покрыта низменными болотными лесами, а воздух заполнен кислородом. На 50 % больше кислорода, чем сегодня, и это создало невероятный всплеск развития жизни… и появление огромных и страшных насекомых. Для некоторых существ кислород в атмосфере был слишком избыточным. Маленькие насекомые не могли с этим справиться, поэтому они начали активно увеличиваться в размерах. Ученые нашли ископаемые останки стрекоз, которые были размером с современную чайку. Кстати, они, скорее всего, были плотоядными хищниками.

(Первоначальный текст заменён на доработку 4)

Рис. 1 Эволюция планеты Земля. Слева часть ядра Солнца, «выброшенная» 600 млн. лет назад - «новорождённая» Земля. Посередине - «пластилиновая планета». Справа – современный глобус.

Рождение Земли

Солнечная система до появления Земли:
Плутон – Нептун – Уран – Сатурн – Юпитер - «Каменный пояс Церера» - Марс – Солнце

«Суммарное» гравитационное поле, удалившихся на критическое расстояние планет, спровоцировало очередной выброс небольшой части ядра Солнца. Выброс сформировался в шар и вспыхнул ярким светом. Светящаяся звезда – новорождённая Земля, удалилась очень далеко, и, достигнув орбиты Урана, вернулась к Солнцу, сделав полуоборот вокруг него, вновь улетела по эллиптической орбите. Но постепенно орбита звезды – Земли становится всё меньше, пока не стала круговой орбитой, очень близко расположенной к Солнцу. Скоро эта небольшая звезда погасла, превратившись в планету.

Так родилась планета – Земля. (Рис. 1 слева) По мере возникновения материи, орбиты планет удаляются от Солнца.

Возраст Земли

Вырвавшаяся часть ядра Солнца, будущая Венера, пролетая мимо Земли, по удлиненной эллиптической орбите, опалила её радиоактивным излучением. Это произошло 410 млн. лет назад.

Вырвавшаяся часть ядра Солнца, будущий Меркурий, так же опалил Землю «чёрной» радиацией. Это случилось 220 млн. лет назад.

Именно в эти времена 410 и 220 млн. лет назад в слоях земли учёные обнаружили очень высокую радиоактивность. Если принять во внимание эти две цифры, и известную нам удалённость орбит Земли, Венеры и Меркурия от Солнца, то получается, что примерный возраст Земли около 600 млн. лет.

В отличие от планет гигантов, у планет земной группы из-за малых размеров возникли большие трудности с рождением спутников. Марс почти разорвало при выбросе спутника планеты. У Венеры и Меркурия, «прижатых» стремительно выросшей массой Солнца, вообще не смогли появиться спутники.

Пластилиновая планета

Наша планета, много миллионов лет назад, была совсем не такая, как сейчас, а намного меньше, и не только по диаметру, но и по массе.

Материк Пангея был действительно целым материком, но не островом в океане Панталасса, а являлся земной корой планеты с меньшим диаметром. То есть, сегодня существующие материки, это «осколки» ранее существовавшей целой земной коры, значительно меньшей планеты, чем современная Земля.

Проведём эксперимент. Для этого нам потребуется глобус земного шара и разноцветный пластилин.
Изготовим пластилиновый шар, значительно меньших размеров, чем глобус.
Поочерёдно, наложив на глобус пластилиновые пластинки, сделаем выкройки материков.
После чего, пытаемся выкройки материков разместить на пластилиновом шаре, понемногу увеличивая диаметр шара.
Добиваемся такого размера шара, чтобы все материки стали плотно прилегать друг к другу.

Рассмотрим получившуюся мозаику континентов на пластилиновой планете:
Северная Америка плотно соединилась с Южной Америкой, если удалить Мексиканский залив и Карибское море. Африка плотно вписалась между Северной Америкой и Южной Америкой. Евразия расположилась севернее Африки и восточнее Северной Америки. Между Северной Америкой и Евразией - разместилась Гренландия. (Рис. 4)
Восточнее Африки - Мадагаскар, Индия, Австралия, Антарктида. (Рис. 1)
Антарктида плотно вписалась между Австралией, Африкой и Южной Америкой. (Рис. 2)
Острова Новой Зеландии, Индонезийские, Филиппинские острова, Японские острова, остров Сахалин и полуостров Камчатка - разместились восточнее Евразии и Антарктиды.
С противоположной стороны пластилиновой планеты (Рис. 1), материки собрались так, что образовался практически круглый просвет – будущий Тихий океан. (Рис. 3)

Все материки плотно прилегают друг к другу. За исключением просвета, где Индия «протаранила» Евразию. И есть ещё один просвет – будущее Средиземное море, о нём отдельный рассказ.

Немного неправильно разместил ось вращения на пластилиновой планете. Она должна проходить через центр Антарктиды с одной стороны, и через остров Гренландию, с другой. Почти так же, как и на современном глобусе.

Диаметр современного земного шара 12700 км, из пропорции получаем, что диаметр пластилиновой планеты, с плотно состыкованными материками, 8700 км. А диаметр отверстия в земной коре 6000 км.!

Рождение Луны

Мы уже знаем возраст Земли. Теперь предстоит выяснить возраст пластилиновой планеты с огромным отверстием в земной коре.

В этом нам поможет история развития атмосферы Земли.
Учёные, исследуя пузырьки газа древних ледников, пришли к выводу, что содержание газа постоянно изменяется. Как известно, углекислый газ – один из парниковых газов, постоянно присутствующих в атмосфере. Он действует как одеяло, поддерживающее более высокую температуру. Когда уровень углекислого газа понижается, климат становится холоднее, и наоборот, при повышении СО2, повышается и температура на земном шаре.

Боб Беркер на основании изучения содержания углекислого газа в древних ледниках построил кривую зависимости СО2 от хода времени.
От 600 млн. лет назад до 300 млн. лет назад, уровень углекислого газа становится гигантским и составляет 20 условных единиц. 300 млн. лет назад график содержания СО2 вертикально падает до нуля. Затем, начиная с 250 млн. лет назад, уровень углекислого газа поднимается, но не более чем до 5-7 единиц. Атмосфера наших дней содержит углекислый газ около 1-1,2 единицы.

Что произошло с атмосферой 300 млн. лет назад, когда она практически полностью исчезла с планеты Земля?

Да, именно в это время, 300 млн. лет назад произошёл выброс части ядра Земли, невероятно гигантской силы. Часть ядра Земли, пробив земную кору и разметав её, вырвалась наружу с такой силой и начальной скоростью, что преодолев притяжение Земли, стала спутником Солнца. Именно этот выброс снёс почти всю атмосферу Земли! Гигантский выброс, придал реактивное ускорение планете Земля, она полетела с большей скоростью по новой эллиптической орбите, оставляя за собой атмосферный шлейф.

Так появился новый спутник Солнца – Луна, рождённый планетой Земля.
Это было «Главное событие» за всю историю Земли.
И в Солнечной системе это было чрезвычайное, единичное событие. Планеты гиганты часто выбрасывали часть своего ядра, но никогда «не отпускали» от себя свои планеты спутники.
Главное событие – рождение Луны, уничтожило почти всю земную жизнь. И это просто чудо, что она осталась на нашей планете.

Диаметр новорождённой Земли

Разница между диаметрами современного глобуса (Рис. 1 справа) и пластилиновой планетой (в середине): 12700 км.- 8700 км. = 4000 км.
Если от диаметра пластилиновой планеты отнять тоже 4000 км., то получим: 8700 км. – 4000 км. = 4700 км., примерно такого размера должен быть шар, появившейся Земли. Но так как в первом промежутке времени (300 млн. лет) планета росла значительно медленнее, чем после появления Луны, и растрескивания континентов, то принимаем диаметр шара Земли (Рис. 1 слева), 6000 км. Получается, что земной шар за всю свою историю вырос более чем в два раза.
Рост диаметра планеты Земля (Рис. 1)
Ф 6000 км. – Ф 8700 км. – Ф 12700 км.

Диаметр новорожденной Луны

Диаметр современной Луны 3475 км
Из пропорции получаем:
Ф 6000 км. – Ф 8700 км.
Х - Ф 3475 км.

Х = Ф новорождённой Луны = 2396 км.

Но Луна не подаёт признаков возникающей материи. На ней не происходят землетрясения, отсутствует вулканическая деятельность, не наблюдается выделение газов. Современная Луна – возникшая материя. Поэтому примерный диаметр вырвавшейся части ядра Земли (новорождённой Луны) равняется 2500 км, что соответствует отверстию в земной коре равному 6000 км.

«Лёгкая» пластилиновая планета

Гравитационное поле любой планеты определяется массой её суперсжатого ядра. Если у планеты удалить ядро, то её гравитационное поле станет в сотни раз меньше. (Если мы встанем у подножья стёсанного торца горной гряды, то мы не испытаем никакого притяжения к этой стене, хотя её масса очень большая. А вот если мы встанем около ядра земли, то нас расплющит до молекулярного состояния.)
Любой «активный» космический объект растёт, увеличивая свою массу и объём, настолько, насколько это ему позволяют сделать удаляющиеся соседние космические объекты.
Земля, во время рождения Луны, потеряла значительную часть своей массы. Запустился активный процесс восстановления массы Земли (для данного космического окружения). Началась выработка ядром большого количества «лёгкой» магмы.

Увеличивающееся расстояние от ядра до поверхности планеты, ослабляет силу притяжения на поверхности материков.

Несмотря на то, что диаметр планеты был почти в 3 раза больше современной Луны, её сила притяжения на поверхности была в 2 раза меньше, чем у Луны.

Эпоха гигантских животных на Земле

Как могли существовать гигантские динозавры, вес которых, в условиях современной Земли, составлял бы 70 тонн, а Аргентинозавр весил бы 110 тонн. Максимальный вес современного сухопутного животного у африканского слона - 7,7 тонны, и он испытывает «трудности» от гравитационного поля современной Земли. Медленно передвигается и может задохнуться во сне от своей большой массы тела.

Объясняется это тем, что во времена процветания динозавров сила притяжения на поверхности Земли была в 10-15 раз меньше, чем на современной Земле. Именно поэтому гигантские динозавры чувствовали себя комфортно и были очень подвижны.

Итак, мы выяснили, что планета Земля появилась из недр Солнца – 600 млн. лет назад.
Луна появилась из недр Земли – 300 млн. лет назад.
От рождения Земли (Рис. 1 слева) до пластилиновой планеты (Рис. 1 в центре) прошло 300 млн. лет, и от пластилиновой планеты до современного глобуса прошло тоже 300 млн. лет.
Диаметр новорождённой Луны примерно равняется 2500 км.
Удаляющаяся земная кора от небольшого ядра Земли снизила силу притяжения на поверхности материков. Именно в эти времена процветали гигантские животные.
Земля на протяжении всей своей истории растёт, увеличивая свою массу и объём.

Литература

1. Боб Беркер. Содержание углекислого газа в древних ледниках.
2. Стюарт Аткинсон. Астрономия. Энциклопедия окружающего мира.

Рецензии

Валерий, у вас отлично развито чувство анализа и фантазии тоже. Получается, что луна - это "плевок" нашей планеты. Сколько же надо было энергии, чтобы выбросить этот сгусток. Сейчас много всяких предположений о строении Земли. Сначала мы верили - думали, что "внутри Земли кипит ядро - там варится железо..." Сейчас, как мне представляется, там возможно пусто. О том говорят некоторые факты. Я, конечно, не специалист в этом вопросе, но может быть это и навело тебя, Валерий, на такую гипотезу по поводу появления луны. Есть ведь даже "дырки" на полюсах Земли, что обеспечивает водоворот земной. Но всё возможно, но это всё-таки фантастика. Ведь есть сейчас такие гипотезы, что луна - космический корабль. Но не корабль, так что-то подобное - например, база космическая. С уважением А.Д.

"Never trust a computer that you can"t throw out a window." - Steve Wozniak


ДОКЕМБРИЙ

Катархей (греч. «ниже древнейшего»), также гадей (англ. Hadean), хэдий, азой, преархей, приской - геологический эон, интервал геологического времени, предшествовавший архею. Осадочные породы из катархея неизвестны.
Начался с образования Земли - около 4,6 млрд лет назад. Верхняя граница проводится по времени 4,0 млрд лет назад. Таким образом, этот эон охватывает первые 600 млн лет истории нашей планеты. В современной геохронологической шкале он не разделён на эры и периоды.
После архейского эпизода расплавления верхней мантии и её перегрева с возникновением магматического океана вся первозданная поверхность Земли вместе с её первичной и изначально плотной литосферой очень быстро погрузилась в расплавы верхней мантии. Этим объясняется отсутствие катархея в геологической летописи.
В популярной литературе распространено представление о бурной вулканической и гидротермальной деятельности на поверхности Земли, которое не соответствует действительности. Никаких вулканов, извергающих на поверхность молодой Земли потоки лавы, фонтанов газов и паров воды в те времена не было, как и не существовало ни гидросферы, ни плотной атмосферы. Те же небольшие количества газов и паров воды, которые выделялись при падении планетезималей и осколков Протолуны, поглощались пористым реголитом.

Земля сразу после своего образования была сравнительно холодным космическим телом - температура в её недрах нигде не превышала температуру плавления вещества. Она имела достаточно однородный состав, не существовало ни ядра, ни земной коры.

Рельеф напоминал испещрённую метеоритами поверхность Луны, однако был сглажен из-за сильных и практически непрерывных приливных землетрясений и сложен только монотонно тёмно-серым первичным веществом, покрытым сверху толстым слоем реголита.

Сутки в начале катархея длились 6 часов и приблизительно равнялись периоду обращения Луны, однако последний очень быстро возрастал.
В начале катархея Луна находилась на границе предела Роша, то есть на расстоянии около 17 тыс. км от Земли, но расстояние между Землёй и Луной быстро увеличивалось (со скоростью около 10 км/год). К концу катархея скорость удаления Луны от Земли снизилась до 4 см/год, а расстояние между ними в это время составляло около 150 тыс.км.

По современным представлениям, жизни на Земле в катархее не было.

Архейский эон , архей (др.-греч. ἀρχαῖος - древний) - один из четырех эонов истории Земли, охватывающий время от 4,0 до 2,5 млрд лет назад.
Термин «архей» предложил в 1872 году американский геолог Джеймс Дана.
Архей разделен на четыре эры (от наиболее поздней до наиболее ранней):

Неоархей
Мезоархей
Палеоархей
Эоархей

В это время на Земле еще не было кислородной атмосферы, но появились первые анаэробные бактерии, которые сформировали многие ныне существующие залежи полезных ископаемых: серы, графита, железа и никеля.

Эоархей - первая геологическая эра архейского эона. Охватывает временной период от 4,0 до 3,6 миллиарда лет назад. Продолжался, таким образом, 400 млн лет. Находится между катархейским эоном и палеоархейской эрой.

В эпоху эоархея на Земле впервые сформировалась твердая земная кора. Однако ее формирование не было еще окончательно завершено, во многих местах лава все еще выходила на поверхность. В начале эоархея продолжалось частое падение на Землю астероидов, это было время завершения так называемой Поздней тяжёлой бомбардировки.
Эоархей - первая эра, от которой сохранились древнейшие горные породы. Крупнейшей подобной формацией является формация Исуа на юго-западном побережье Гренландии, возраст которой оценивается в 3,8 млрд лет.
В эпоху эоархея образовалась гидросфера Земли, однако воды на Земле было сравнительно немного и единого океана еще не существовало, водные бассейны существовали изолированно друг от друга, при этом температура воды в них доходила до 90 C°.
Атмосфера существенно отличалась от современной и характеризовалась высоким содержанием CO2 и низким содержанием азота. Кислород в атмосфере практически отсутствовал. Плотность и давление атмосферы также были значительно выше современных.
В конце эоархея началось формирование первого суперконтинента Ваальбара.

К эоархею относятся самые древние строматолиты - ископаемые продукты деятельности цианобактериальных сообществ. В конце эоархея появились первые прокариоты - простые одноклеточные безъядерные организмы.

Палеоархей (от др.-греч. παλαιός - «старый» и ἀρχαῖος - «древний») - вторая геологическая эра архейского эона. Охватывает временной период от 3,6 до 3,2 миллиарда лет назад. Эта датировка чисто хронологическая и не основана на стратиграфии.


К концу палеоархея в основном завершилось формирование твердого ядра Земли, вследствие этого напряженность магнитного поля Земли была уже достаточно высока и составляла не менее половины современного уровня. Это давало развивающейся жизни достаточную защиту от солнечного ветра и космических лучей.
В палеоархее продолжалось формирование первого суперконтинента Ваальбара.

Мезоархей (от др.-греч. μέσος - «средний» и ἀρχαῖος - «древний») - третья геологическая эра архейского эона. Охватывает временной период от 3,2 до 2,8 миллиарда лет назад. Датировка чисто хронологическая, не основана на стратиграфии.


В мезоархее существовал первый суперконтинент Ваальбара, расколовшийся в конце этой эры. К мезоархею относится древнейший известный кратер, оставшийся от столкновения Земли с астероидом - недалеко от города Маниитсок в Гренландии. Это событие произошло около трех миллиардов лет назад. К концу мезоархея относится, возможно, первое оледенение на Земле, так называемое понгольское оледенение (англ. Pongola glaciation - по названию города в ЮАР). Оно произошло 2,9 млрд лет назад.

Строматолиты, найденные в Австралии, показывают, что в мезоархее на Земле существовали цианобактерии.

Неоархей - геологическая эра, часть архейского эона. Охватывает временной период от 2,8 до 2,5 миллиарда лет назад. Эти границы проведены хронометрически (по определённым моментам времени), а не стратиграфически (по определённым слоям пород).
Также относится к беломорскому циклу (эпохе) тектогенеза, в котором происходило формирование настоящей континентальной земной коры. В неоархее появился кислородный фотосинтез. В самом начале следующей эры, палеопротерозоя, он стал причиной кислородной катастрофы.

Команде французских ученых из Парижского Института Геофизики и Национального центра научных исследований (НЦНИ) Франции удалось обнаружить следы жизни в строматолитах, чей возраст составляет около 2,7 млрд. лет. Обнаружено их существенное сходство по форме со строматолитами нашего времени.
Эти известковые отложения необычной формы, чем-то напоминающие морскую капусту, были образованы неисчислимой колонией бактерий, активных в архейском эоне (от 4 до 2,5 млрд лет назад). Такие ископаемые обнаружены в Австралии (осадочное образование Тумбиана) на глубине 70 метров, а также в Южной Африке.
Использование микроскопической и спектроскопической техники позволило изучить органическую материю и минералы из недр скал с точностью до нанометров, что в тысячи раз мельче, чем разрешение обычного микроскопа. При помощи этой техники удалось исследовать связи между ископаемыми микроорганизмами и их влияние на жильные минеральные породы; так, например, были найдены нанокристаллы арагонита в современных строматолитах.

Протерозойский эон , протерозой (греч. πρότερος - первый, старший, греч. ζωή - жизнь) - геологический эон, охватывающий период от 2500 до 541,0 ± 1,0 млн лет назад. Пришёл на смену архею.
Протерозойский эон - самый длительный в истории Земли.

Протерозой делится на 3 эры:

палеопротерозой;
мезопротерозой;
неопротерозой.

Сидерий (от др.-греч. σίδηρος - железо) - геологический период, часть палеопротерозоя. Охватывает временной период от 2,5 до 2,3 миллиарда лет назад. Датировка чисто хронологическая, не основана на стратиграфии.
На начало этого периода приходится пик проявления полосчатых железистых кварцитов. Железосодержащие породы формировались в условиях, когда анаэробные водоросли производили отработанный кислород, который, смешиваясь с железом, образовывал магнетит (Fe3O4, оксид железа). Этот процесс вычищал железо из океанов. В конечном итоге, когда океаны прекратили поглощать кислород, процесс привел к образованию насыщенной кислородом атмосферы, которую мы имеем на сегодняшний день.
Гуронское оледенение началось в сидерии 2,4 млрд. лет назад и закончилось в конце риасия, 2,1 млрд. лет назад.

Риасий (др.-греч. ῥύαξ - поток лавы) - это второй геологический период палеопротерозойской эры, длившийся с 2300 по 2050 млн лет до н. э. Датировка чисто хронологическая, не основана на стратиграфии.
Образуется Бушвельдский комплекс и другие похожие интрузии.
В конце риасского периода (к 2100 млн лет до н. э.) завершается гуронское оледенение.
Появляются предпосылки появления ядра у организмов.

Орозирийский период (др.-греч. ὀροσειρά - «горная цепь») - третий геологический период палеопротерозойской эры, продолжался 2050-1800 миллионов лет назад (хронометрическая датировка, не базирующаяся на стратиграфии).
Вторая половина периода отмечена интенсивным горообразованием практически на всех континентах. Вероятно, в течение орозирия атмосфера Земли стала окислительной (богатой кислородом), благодаря фотосинтезирующей деятельности цианобактерий.
В орозирии Земля испытала два крупнейших из известных астероидных ударов. В начале периода, 2023 млн лет назад, столкновение с крупным астероидом привело к образованию астроблемы Вредефорт. Ближе к концу периода новый удар привел к образованию медно-никелевого рудного бассейна в Садбери.

Мезопротерозой - геологическая эра, часть протерозоя, начавшаяся 1,6 миллиарда лет назад и окончившаяся 1 миллиард лет назад. Континенты существовали и в палеопротерозое, но мы мало знаем о них. Континентальные массы мезопротерозоя более или менее те же самые, что и сегодня. Основными событиями этой эпохи являются формирование суперконтинента Родиния, распад суперконтинента Колумбия и эволюция полового размножения. Мезопротерозой разделен на три периода:

Калимий
Эктазий
Стений

Основные события эры: формирование протоконтинента Родиния и эволюционирование полового воспроизводства.

Калимийский период (англ. Calymmian period, от др.-греч. κάλυμμα - «покров») - первый геологический период мезопротерозойской эры, продолжавшийся 1600-1400 миллионов лет назад (хронометрическая датировка, не базирующаяся на стратиграфии).
Период характеризуется расширением существующих осадочных чехлов и появлением новых континентальных плит в результате отложения осадков на новых кратонах.
В ходе калимия около 1500 миллионов лет назад распался суперконтинент Колумбия.

Эктазийский период (др.-греч. ἔκτασις - «расширение») - второй геологический период мезопротерозойской эры, продолжавшийся 1400-1200 миллионов лет назад (хронометрическая датировка, не базирующаяся на стратиграфии).
Название период получил из-за продолжавшегося осадконакопления и расширения осадочных чехлов.
В породах возрастом 1200 миллионов лет с канадского острова Сомерсет были обнаружены ископаемые красные водоросли - древнейшие из известных многоклеточных.

Стенийский период (др.-греч. στενός - «узкий») - заключительный геологический период мезопротерозойской эры, продолжавшийся 1200-1000 миллионов лет назад (хронометрическая датировка, не базирующаяся на стратиграфии).
Название происходит от узких полиметаморфических поясов, сформировавшихся в этом периоде.
В стении сложился суперконтинент Родиния.
К началу этого периода относятся наиболее ранние ископаемые останки эукариот, размножавшихся половым путем.

Неопротерозой , англ. Neoproterozoic Era - геохронологическая эра (последняя эра протерозоя), начавшаяся 1000 млн лет назад и завершившаяся 542 млн лет назад.
С геологической точки зрения характеризуется распадом древнего суперконтинента Родиния как минимум на 8 фрагментов, в связи с чем прекращает существование древний суперокеан Мировия. Во время криогения наступило самое масштабное оледенение Земли - льды достигали экватора (Земля-снежок).
К позднему неопротерозою (эдиакарий) относятся древнейшие ископаемые останки живых организмов, так как именно в это время у живых организмов начинает вырабатываться некое подобие твёрдой оболочки или скелета. Большинство фауны неопротерозоя не может считаться предками современных животных, и установить их место на эволюционном древе весьма проблематично.
Неопротерозой разделен на три периода:

Тоний
Криогений
Эдиакарий

Тоний (др.-греч. τόνος - «напряжение, натяжение») - первый геохронологический период неопротерозоя. Начался около 1 млрд лет назад и закончился около 850 млн лет назад. В этом периоде начался распад суперконтинента Родиния.
К этому же периоду относится бурная адаптивная радиация акритарх.

Криогений (др.-греч. κρύος - ледяной холод, мороз и γένεσις - рождение) - второй геохронологический период неопротерозойской эры. Начался 850 млн лет назад и закончился около 635 млн лет назад. Продолжался, таким образом, около 215 млн лет. Верхняя граница криогения основана на стратиграфии, нижняя - чисто хронометрическая.
Этот период характеризовался самым значительным, вплоть до экватора, оледенением Земли (так называемая гипотеза «Земля-снежок»).
В это время существует одна из древнейших фаун многоклеточных животных - хайнаньская, большая часть представителей которой, видимо, имели червеобразную форму.
Во время Криогения суперконтинент Родиния распался, и суперконтинент Паннотия начал формироваться.

Эдиакарий (англ. Ediacaran period) - последний геологический период неопротерозоя, непосредственно перед кембрием. Длился примерно с 635 по 541±1 миллионов лет до н. э. Название периода образовано от названия Эдиакарской возвышенности в Южной Австралии. Официально название утверждено Международным союзом геологической науки в марте 2004 и объявлено в мае того же года. До утверждения официального международного названия в русскоязычной литературе использовался термин «вендский период» или «венд». Этот термин употреблялся также в зарубежной литературе (англ. Vendian period).
В настоящее время, согласно решению Международной стратиграфической комиссии (МСК) 1991 года, термин «венд» употребляется только применительно к территории СССР (России). В шкале Международной комиссии по стратиграфии докембрия венду соответствует «неопротерозой-III», обособленное подразделение с нижней границей 650 млн лет.
Землю населяли мягкотелые существа - вендобионты - первые из известных и широко распространённых многоклеточных животных.
В отложениях этого периода ископаемые остатки живых организмов редки, потому что они ещё не успели выработать твёрдую оболочку. Тем не менее в некоторых местонахождениях сохранилось немало отпечатков.

Продолжение следует...

А. Ю. Розанов

Что произошло 600 миллионов лет назад

АКАДЕМИЯ НАУК СССР

Ответственный редактор академик Б. С. Соколов


Рецензенты:

д-р биол. наук В. Н. Шиманский канд. геол.-мин. наук М. А. Федонкин

Введение

В истории развития жизни на Земле было несколько событий, которые можно считать кардинальными. Не говоря уже о самом возникновении жизни, по поводу чего существует множество гипотез, очень важными в истории были:

Переход от прокариот (или безъядерных одноклеточных организмов) к эвкариотам (одноклеточным организмам с ядром);

Переход от одноклеточных организмов к многоклеточным;

Приобретение организмами возможности строить скелет.

Именно об этом последнем событии, произошедшем около 600 млн. лет тому назад, речь в нашей книге. Этот рубеж обычно в специальной литературе называется границей докембрия и кембрия (рис. 1).

Время, с которого организмы начали строить скелет и до нынешнего дня, называют фанерозоем. Именно эта фанерозойская история органического мира изучена наиболее достоверно, так как с момента появления скелетных организмов они стали легко захороняться в породах, и при геологических изысканиях специалисты обнаруживают остатки этих скелетов в больших количествах. Долгое время человечество черпало знания об истории органического мира, как правило только изучая органические остатки из пород фанерозойского возраста.

До последнего времени все курсы палеонтологии и исторической геологии во всем мире были снабжены информацией об эволюции жизни почти исключительно только по фанерозойской истории. Однако чем больше накапливался материал по самым ранним этапам фанерозоя, тем становилось все яснее исключительное богатство фауны начала кембрия. В последние годы стало ясно, что почти вое типы организмов, существующих ныне, существовали и тогда. Естественно, возник вопрос! «А были ли они раньше? И почему мы не находим их остатки в более древних слоях?».

Человеку, оценивающему продолжительность различных явлений в масштабе времени своей жизни, очень трудно воспринимать миллионы и миллиарды лет. Однако для представления о темпах изменений в органическом мире нам придется фактор времени рассматривать именно в таких категориях, как миллионы и миллиарды лет. Сколь велики эти цифры, можно представить себе исходя из некоторых сравнений.

Человечество от момента своего появления на Земле прошло всю свою историю всего чуть более чем за 1 млн. лет, а первая жизнь на Земле появилась более 3-3,5 млрд. лет тому назад. Известные всем мамонты давно вымерли, но это было всего лишь около 10 тысяч лет назад, а знаменитые динозавры исчезли с лица Земли около 65-70 млн. лет назад.

Рис. 1. Геохронологическая шкала. Справа более детально показан интервал вокруг границы докембрия и кембрия


Но вернемся к границе кембрия и докембрия. Уместно, вероятно, вспомнить, что сегодня понятие «граница докембрия и кембрия» для всех геологов и палеонтологов имеет вполне определенный реальный осязаемый смысл. Это произошло потому, что ученые смогли выработать принцип ее проведения и в настоящее время озабочены лишь выбором наилучшего стандарта в одном из районов мира. Но если вернуться на 20-25 лет назад, то картина была совершенно иной.

На специальном симпозиуме в Париже в 1957 г. собрались крупнейшие в мире знатоки стратиграфии и палеонтологии позднего докембрия и раннего кембрия. Было высказано много самых различных вариантов возможного распознания этой границы. Причем более всего говорилось о необходимости учитывать различного рода геологические явления, такие, как угловые несогласия, перерывы, ледниковые отложения, и меньше всего надежд было на палеонтологический метод. Были лишь редкие энтузиасты в лице французов Г. А. Шубера и П. Юпе и американца Г. Виллера, которые призывали отдать должное палеонтологическим данным.

Заключение симпозиума в Париже было крайне пессимистично. В решениях было записано, что симпозиум не считает себя компетентным предложить эталон серии, где вопрос о нижней границе кембрия может быть решен однозначно, и вообще не считает возможным решить этот вопрос хоть в какой-то мере в настоящее время.

Но последующие 10 лет привели к кардинальным изменениям в отношении специалистов к проблеме кембрия и докембрия. В 1962 г. группа совсем молодых советских специалистов из Геологического института АН СССР, проанализировав материал, предположила, что проблема значительно проще, чем она казалась умудренным опытом специалистам.

Во-первых, показали они, только палеонтологический метод может быть использован при решении этой проблемы. И во-вторых, они показали, что существует рубеж, на котором очень многие группы ископаемых приобретают возможность строить скелет, и, таким образом, этот рубеж хорошо распознается и может быть принят за искомую границу. Старшие коллеги говорили, что такая простота решения проблемы свойственна молодости и что, вероятно, дело обстоит, конечно, много сложнее.

В 1966 г. акад. В. В. Меннер писал, что «нет и двух специалистов, которые имели бы но этому вопросу общее мнение» (имеется в виду вопрос о границе кембрия и докембрия), В. В. Меннер очевидно был прав и не прав одновременно. Мнения, действительно, у ученых сильно расходились, но эти молодые специалисты имели тогда безусловно одно мнение. В том же году вышла их совместная монография, а уже в следующем, 1967 г., на Всесоюзном совещании в Уфе по поводу доклада о границе кембрия и докембрия, сделанного этими специалистами, было сказано, что это настолько очевидно, что не стоит ломиться в открытые двери.

Но представления советских исследователей по этому поводу в то время еще не разделяли их зарубежные коллеги. В 1966 г. во время моего пребывания в Англии тогдашний президент кембрийской подкомиссии Международной стратиграфической комиссии Джеймс Стабблфилд, обсуждая результаты исследований, проведенных в СССР, предложил организовать международную экскурсию в Якутию, где находились наилучшие разрезы переходных толщ от докембрия к кембрию. Он считал, что правота выводов, сделанных советскими специалистами, должна быть подтверждена фактическим показом на месте. Скепсис зарубежных специалистов только теперь может быть понят, поскольку в те годы, в том числе и во время Парижского симпозиума, не были известны материалы по Сибири, Монголии, Китаю и Ньюфаундленду. О том, что именно в этих регионах находятся наиболее представительные разрезы, ученые всего мира узнают лишь позднее, в 70-е и 80-е годы.

Серьезной вехой в истории исследований по границе кембрия и докембрия был выход в свет крупной монографии советских специалистов «Томмотский ярус и проблема нижней границы кембрия», В этой книге были описаны многочисленные материалы по Сибири, включая всю древнейшую фауну, и проанализирован существовавший на то время весь мировой материал. Эта работа стала настольной книгой всех исследователей, советских и зарубежных, занимающихся проблемой границы кембрия и докембрия. Именно в этой работе были сформулированы все основные теоретические положения, положенные позднее в основу решений Международной рабочей группы по границе кембрия и докембрия, созданной в 1972 г. в Монреале на Международном геологическом конгрессе по инициативе академиков В. В. Меннера, Б. С. Соколова и проф. М. Глесснера. Пройдет еще более 10 лет, и эту книгу переиздадут в США, и зарубежные специалисты будут называть ее «наша библия».

Начиная с 1973 г., когда Международная рабочая группа впервые посетила сибирские разрезы, была проделана огромная исследовательская работа как самой Рабочей группой, так и национальными рабочими группами. В 1979 г. в Кембридже и в 1983 г. в Бристоле были подведены итоги и сформулированы основные принципы проведения границы. Уровень стал всем ясен, и осталось выбрать эталонный разрез. А претендентов после долголетней селекции осталось только три: Сибирь, Ньюфаундленд и Китай. Но, как понимает читатель, выбор эталона - это уже задача, далеко выходящая за рамки просто научной задачи. При выборе стратиграфических эталонов играют роль различные мотивы, такие, как доступность, сохранность и т. д.

В заголовке книги приведена цифра 600 млн. лет тому назад. Но читатель должен отнестись снисходительно к этой цифре, так как до сих пор не очень ясна реальная абсолютная датировка границы кембрия и докембрия, и разница в представлениях составляет до 70 млн. лет, а может быть, и даже несколько больше.

В наиболее известных последних учебниках, сводках и руководствах была принята цифра 570 млн. лет. Но это некое усредненное представление, которое скорее отражает наше временное восприятие этого рубежа, чем реальное положение вещей.

Самым сложным моментом в датировке границы кембрия и докембрия было то, что цифры, полученные по породам, реально находящимся на границе кембрия и докембрия, в классических разрезах Сибири признавались недоброкачественными и действительно составляли 520-530 млн. лет, что обычно считалось уже низами среднего кембрия. Другие же значения, близкие к 570-550 млн. лет, как правило, были получены из пород, стратиграфическое положение которых было недостаточно хорошо доказано.

Поделиться